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ABSTRACT

ABSTRACT

The flexible configuration of a humanoid robot makes it broadly applicable in practical

scenarios. With improvements in humanoid robot technology, robot mobility has gradually
evolved from crawling, walking, and jumping to running and flipping. In nature, many animals
are adept at using the environment to shape their movements, such as turning around or slowing
down to a sharp stop. A robot in motion is likely to collide violently with an obstacle if it is too
late to slow down. Therefore, if a moving robot can imitate animals by planning and controlling
its own movements and motion strategies to turn or stop when facing wall-like obstacles in
the environment, the robotic movement efficiency will be greatly improved. Therefore, if a
humanoid robot can master the ability to use the environment to shape its own motion state, it
will be able to greatly improve its movement efficiency. In this study, we combine the project
conducted by the Guangdong Basic and Applied Basic Research Fund called ”Research on the
key technology of whole-body balance control of footed mobile robots for complex terrain,”
and conduct research on the planning and control method regarding the wall-flip movement for
humanoid robots. Our approach comprises observing and analyzing the wall-flip maneuver of
parkour athletes and improving the ability of humanoid robots to use the environment to turn.

The contribution of this study is to investigate the effects of motion sequence, contact
force, equivalent moment of friction, height of the contact point, and robot motion state dur-
ing the wall-flip. By exploiting the contact properties of the environment, the environmental
adaptation capability and motion efficiency of the robot in complex environments is improved,
enabling the robot to adjust its orientation using walls and avoid direct impact on wall obsta-
cles. The main contents are the following:

(1) In this study, the movement sequences and contact force during the wall-flip are calcu-
lated by simplifying a human model and analyzing the kinematic data. The kinematic move-
ment sequence of the simplified model and contact force of the wall-flip are summarized.
Combining the kinematic law governing the human wall-flip motion with robot dynamics pro-
vides a basis for the motion planning and control of the humanoid robot wall-flip task.

(2) To solve the unknown internal forces in a wall-flip robot system, this study preserves

I
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the basic features of the original physical system of the parkour and proposes a dual-mass
wall-flip dynamics model. The two-mass wall-flip dynamics model was combined with the
wall-flip motion timing for trajectory tracking control so that the simplified model could suc-
cessfully complete the wall-flip motion dynamics simulation. For the dynamic simulation of
the humanoid robot wall-flip task, the forces on the waist joint of the robot model are analyzed,
then, the theoretical equivalent moment range conditions are given. The wall contact forces
of the humanoid robot are analyzed. Accordingly, the theoretical range of the wall-normal
forces in the simplified model simulation is given to provide the basis for the control strategy
described in Chapter 4.

(3) The effects of equivalent torque and key limbs on the wall-flip are compared via a
dynamics experiment using the Atlas model in the Pybullet dynamics simulation environment
to further verify the validity of the wall-flip maneuver planning and control. Through an ex-
perimental analysis of robot motion in a multi-degree-of-freedom robot dynamics simulation
environment , the effects of frictional non-contacting legs are derived, which are the key factors
for successfully completing the robot wall-flip task. Subsequently, the magnitude of frictional
forces during wall-touching is estimated. The results of the simulation are discussed, and the
corresponding parameters are obtained to enable the humanoid robot Atlas to perform a wall-

flip.

Key words: Biologically-Inspired Robots; Wall-Flip Maneuver; Action Planning; Trajectory

Tracking Control; Dynamics
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Fig.1-2 Parkour motion of squirrel for perching
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Fig.1-6 MIT somersault robot
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Fig.1-8 Cassie robot
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Fig.2-1 Snapshot of wall-flip movement
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Table.2-1 Parameters of motion capture system
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Fig.2-2 Parkour runner with corresponding motion capture system model
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Fig.2-3 FElastic soft pressure sensor with stress variation relationship
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Fig.2-4 Location of the marker of motion capture system
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Fig.2-5 Contrast between parkour runner and motion capture system model
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Fig.2-6 Multi-link model
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Fig.2-7 Simplify Model of wall-flip
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Fig.2-10 Experiment 2 wall-flip simplified model data
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Table.2-3 Kinematic parameters of wall-flip: body angle,(6)

g 60 6,0 60 6,0)

Exp 1-Suc  76.97 71.64  90.93 353.86
Exp 2-Fail 99.35 104.46 117.31 338.81
Exp 3-Suc  84.21 75.19  77.67 356.38
Exp 4-Suc 89.44 78.72  81.79 359.54
Exp 5-Fail 76.17 7142  65.67 404.88
Exp 6-Suc  89.12 77.78 7592 359.53
Exp 7-Fail 82.48 81.68 94.16 32599
Exp 8-Suc  75.06 7097  89.04 347.94
Exp 9-Suc  74.08 6747  72.15 357.31

G AR 5o B 2 B P 2215 e L PR 22 A R AR AR RN e RESSR AT, (1) AE R I
A, SEE 2 55 7 NI I BCA e R R RUE O A, BRIV R Al
/AN, IR AU S S B 2R A, BRI Vs S B (2) SR 2
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Fig.2-17 Experiment 9 wall-flip simplified model data
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Table.2-4 Kinematic parameters of the wall-flip: waist angle, (¢)

LT 0O) () B B0)

Exp 1-Suc  55.74 31.38 -18.19 108.34
Exp 2-Fail 66.98 -1.73 -19.59 77.85
Exp3-Suc 73.70 5043 -1.24  96.01
Exp4-Suc 78.82 39.60 -8.28  86.49
Exp 5-Fail 47.14 2456 -5.01  89.37
Exp 6-Suc 67.44 3244 -093 89.16
Exp 7-Fail 1245 -10.35 -1546 78.22
Exp 8-Suc 2480 -6.77 -19.76  89.08
Exp 9-Suc 21.28 -9.80 -17.41 90.17

Horb (1) FEMR BRI 20, RS A BE O I, SRBLN BOMS -5 B T A %) B~ B
FETIAT; (2) flBE B 20 5 B BE B 220 R B BE B 20 1) A B2 25 (3R T iz 3l AR v I £
FERVAERARE 5 (3) 7E B BER; ZINE I A BEX S (i, BIVRES- S 4 A B A HE A 2RI A
e, RICVHEEEESTE, R0 ryHesh 1.

AT AREURR 5 BE TR Ay L ST A JRE A fh JR R A A Py S R Tk J3E 3z 3 P
R PABERT 26 =S B, ANl 2 WA GRS, AT B AL B, 45t R
T A HEESCATY F JEE R 2 il B R A A A R E R IIGE BE o AR SR A s ml AR 2]
JUR LR R BE RS 22 . B BEI 22, R BE I 2RI U 20 A AR AR B RESCT AR RE L %
B PR K ST T2 4 S -5 Tk B S S s (i 22 A 2 2-S s -

F2-570 B R 1B SRR A . RO B IR P A EEE R AR A B
il Egi b B, S RE o B BO 2 B B g N 20 0413 A AP A . mT
DA, 1) s B s S R R B G I 14142 4 T 3 O A s T oA S S
BE 2 A I O AN BT e A P F . 2) FsC Ml s B A A~ 2
JEERH AR TR ) A B 2 3 v R A AR AR -3 TR JEE

PO AE IR A BE A b, R M T A0 R 1 BE T, RDhRERE L, fbEENS, R
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Table.2-5 Mean values (standard deviation) of angular velocity and acceleration

B B AR B K B (s)
ik B B 220 ) £ TR (L)
0 -114.00(7.01) -60.59(29.03) 0.0083(0)
h - 370.17(508.80)  -732.23(114.55) 0.0083(0)
bx -0.51(0.062) -0.93(0.027) 0.0083(0)
i BE s 20 4 F IR BE (/s°)
g 9.56(424.97)  -307.37(115.74) 0.0083(0)
¢ 1.22¢4(2.15e3)  -5.97e3(4.07¢2) 0.0083(0)
bx 33.67(8.55) 164.72(45.46) 0.0083(0)
P BE T ZI 1 F L (Cs)
0 -67.86(26.49) -15.03(43.28)  0.1217(0.027)
¢ -151.28(737.83)  -28.74(768.40)  0.1217(0.027)
bx -0.114(0.78) -0.0072(0.54)  0.1217(0.027)
P BEIS 20 F IR B (/s”)
6  -183.18(136.70)  -255.97(98.18)  0.1217(0.027)
$  -4.06e3(3.51e3)  9.59¢2(3.72¢3)  0.1217(0.027)
bx 12.28(11.69) 5.67(1.43) 0.1217(0.027)
BB ZI 0 F LR (s)
0 13.06(21.64) 69.31(13.77)  0.2717(0.041)
¢ 847.95(945.46) 1312.22(1179.41) 0.2717(0.041)
bx -0.095(0.60) -0.353(0.22) 0.2717(0.041)
BRE R ZI A F ISR (/s”)
g 1.15¢3(2.49¢3)  -294.92(163.26)  0.2717(0.041)
¢ 5.62e3(1.46e3)  3.56e3(3.09¢3)  0.2717(0.041)
bx -30.86(22.13) -35.67(22.68)  0.2717(0.041)
T HEST 2 1 R HRE (Cs)
0 365.78(89.81) 393.41(49.36)  0.7800(0.105)
¢ -814.67(1.58¢3)  1.08¢3(3693.67)  0.7800(0.105)
bx 0.037(0.38) 1.012(0.52) 0.7800(0.105)
TEHIS 20 F R (/s%)
6  -261.22(387.46)  -5.39(510.38)  0.7800(0.105)
¢ -441e3(1.12¢3)  -5.56e3(1.31e2)  0.7800(0.105)
bx -40.33(28.42) -81.47(12.96)  0.7800(0.105)

BETHIAE A SCRRE K07 T A3l BE TE 2 e R B S 5 1) b, Sy 1) B R BE R A T Y
W ) Bzl —BOSAE NRZBAT IR EZ) N 1.0 2 1.6m/s, BIPHEEZN 1.5 2 6.0m/s,
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RBFFE S B B 1 R R T B AT R (382-6) , FOP g5 S
T s SR E st ARG s, VEHLEERERE B MEOBHIIERE (0, L0, ) K
RHIBENRE (0, 0 300 BUEKTIERE: 0, S POHOE . PRI 00 B R FE
(07.,0;) FRHEBHE (0, , v,) BT BEAD IR BRE (5, 5,). BRI
BB T DA 5 UV S S FE B R0 B B OB YA s B
VAR (T B 1 DA A 2 0 1 5K -k A B B 226

S Ao 5 7 T 155l 2 0 T S S SRR I (D
9 WIS AR 27, F2-T R TS . I 5 BT e 2 5 T T £ )
TABERRETES . PEFR AR . ST B BRI A 4 SR 2 0 P (AR
9, DAL RT3 A P SRR 2% AERCIIAR
TR SE 2 TSR P T DA I 1) TSR R, O S B TR B
Sef/N: 2) ORI 1 fe B R ) W B R TR RS B 3) AEW)
I D25 T B T AR R 25 Y 785 T MR B2 B 4) )
filRE 2 B T B R R 5) ZERMIGH T, IR BT A 5
T B L T 1

g TR, PR B S B2 S MO T IE B AU 5 B bR B T R

%

7 2-6 fl BE S s B 2 A

Table.2-6 Kinematic parameters of wall-flip

SHGE  h(m) sp(m) s,(m) o, () v () o, (W) v, (S) O, (ms) O (ms)

Exp 1-Suc 1312 0.852 2.008 3.36 7.56 1.68 2.16 252 4.86
Exp 2-Fail 1.606 0982 1.927 2.40 7.80 1.92 2.40 2.16 5.10
Exp 3-Suc 1366 0.873 2.337 2.64 8.04 1.92 2.28 2.28 5.16

Exp 4-Suc 1370 0.910 2.029 2.52 8.16 2.16 2.16 2.34 5.16

Exp 5-Fail 1349 0.857 2.135 2.40 6.60 1.08 1.64 1.74 4.12
Exp 6-Suc  1.378 0.815 2.326 2.36 7.20 1.32 2.40 1.84 4.80
Exp 7-Fail 1.456 0.804 2.574 2.04 7.92 1.44 2.16 1.74 5.04
Exp 8-Suc  1.385 0.893 2.366 2.52 7.44 1.44 1.80 1.98 4.62
Exp 9-Suc  1.399 0.790 2.398 2.88 7.32 1.32 2.28 2.10 4.80
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Table.2-7 Mean value (standard deviation) of key parameters of the wall-flip

Wi Bt K ) R B2 (s)
BRSRERIICA 0 () fllBER %) 81.98(6.72) 86.00(11.98) 0.0083(0)
HEEE R Z 73.63(4.34) 85.85(16.91) 0.1217(0.027)
BIBE %) 81.25(7.46) 92.38(25.86) 0.2717(0.041)
VR HhUI %) 355.76(4.38) 356.56(42.33) 0.7800(0.105)
MR ¢ () i B2 22 63.63(11.30) 55.74(10.27) 0.0083(0)
5 B F 2] 33.40(5.47) 11.98(19.39) 0.1217(0.027)
B REIN -16.14(3.61) -13.35(7.51) 0.2717(0.041)
5 Hh s 2 93.20(8.06) 81.81(6.55) 0.7800(0.105)
PEARAR A (m) il B bt ) 0.79(0.07) 0.81(0.02) 0.0083(0)
P BE I 2] 0.78(0.10) 0.79(0.08) 0.1217(0.027)
BIBETZ 0.67(0.13) 0.68(0.13) 0.2717(0.041)
T2 0.81(0.05) 0.84(0.05) 0.7800(0.105)

g BE VT A G
B T 3 A A e

(2.18,4.90)(0.25,0.22)  (1.88,4.75)(0.24,0.54))

1.368(0.03) 1.47(0.13)

(1) 32 A B i s S P2 2 5 B T e BT iR S 1) iz RS, R iR A I 45
bRo AL MBS s S T (3R2-65K2-7) , TERIh Fe MU BE S R REA
M B T T4 K R PR -3 (B A K P D5 ) L 2.18m/s, SR ) L 4.90m/s; AR
P il B s SRR A AR A o A B TR T s R BE R~ I (B KD 1) b 1.88my/s, T
] | 4.75m/s . SEAMEE TR I AU EEAR AR, Ml i TR O Il R AR BT d
BE 5 UNSRAZ A B T i ) R A/ DS, TR B T E S AR DR B TT_E R OR o MR T iy
Ik S BE xR PR B AR S, ARAR Iz sh Bl 0, Bl B s R ) B e — 2P A
PR IRTEE (so) 297 0.8 3] 0.9 KZ ). SR BE 2= i i Jo — 2 S A BE A = JE g,
2 so AVPI, SHEEE RS A, QKA (0) KN 2 sg KRN, sk EE
K, EHAORR, SEORE AR, 220K ERfER 2, BE T LR GE
RN, PECERIRM FIL, RIS s s, R R AT, B R Y TR
AREARTE -

3
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(2) AR AR B ER IR A I HIAE 81° Zifh . (HR2ARIA A5
BETHFE A A v M 0 IR o AE TN b BE S B e AR v, S BE TR A ) v B L (o) TE
1312 5K (L Bl By 75%) 3] 1.399 K (L4 FISE B mimd) 80%) Z1a]. mhifl
BESS TN 7N UREAS I (BN 1.238 Ko Ml BEZS Bl AR T REAS (S5 2, S5 5 55558 7)
WHAYHE, hFAR2-30R 05 Al SCH 2 5500 7 HOPS Vi B 16 i i 51
TSES S MU E LI EBUEl. diRRs2-6nT AR, K5 2 55500 7 ML SR 5
Kl ERARFETEEGE R, RIS 2 KB T hy = 1.606 K, LRI EE S E N
REA RIS (ER T 0.238 K. sl Bt n] AR, Y Ui 1 BE 5 AR AR A (0) A %
ChIvge {2k B 1 il B 2 R L RE RO A A (0) Bie2-3PR) , ARGz sh A3l T, ho
K, WEARAESBR, ho VN, IKTARAEBUN. JREHRER S KI5
FHRIINER A e g B ) v B S AR R s 2. e T ) 2 T 50 TR B s o s o
TERETH_ERTA I T RN IR, 258 N BE 2 flia gl MR AN B R s, A s
BAG AR o AR P B TR Al P A o 30 BT T AR 24 BRI B e 1) 75% 3] 80% Z T
2.3.5 HEMENE R NSRS

MNATEIZ B AR J AR5 I [ 1 FIL AT S 7 A 1) P 7 DA Bk sk A At
IS S IEIRAE T EE R . B AT EIZ Sl R b 52 2 A 0 U B A ikiz
SRR EEICE . A/ NICR S 48 el Bl S R AR G SN SR R

SCH 1 R RIREAS o Hh IR A B S SR g A St A B i A 1) g R T 2-
8T, TERMEEMIOTEL (1-2), FlsE B AT DAS A A il BE S s ek B0 I/ 1
BEMNZ S, el By, MO A BRI A S B e = A Sy, SR
UEAEh 490.35N, B R S ACK 1] Lz st 3y, BEE a2 2 00 s sz . e B B
BrEe (2—3), BOEEE AR BETE A ), R FIE AN IE(E N 412.29N, FffS 20T
BN, BEIFEEE , B/NAEGL ON. 7ERSEERT Br (3—4), TERIMS 2 B AR 2 L 05 i)
Infazhi e BT R, (e Reh, BRI BT ON, EL VRN 20 . R HIEY
B, ORI TR 994.72N, %5+ 1.53 baw.

SEI 2 SR AT I SRR AR o S A B A S AT A SR ) BE TR 17
ZERE2-1901 00, AEREMEETI B BE (152), BOMSE S AT DA B Al B S il g
TR R BET 22l , FEARARIGT B, MM A AT R A A S BT R A AR R T, SR
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Fig.2-18 Experiment 1 Experimental data of normal force on the wall

BNIEAE Ry 367.7IN, 5 P S A 1) Izl ds, 14 32 300 H w8/ o
TEREBENYBE (2—3), OmSEA MRm BET & ), IR 358 AN/ INWIE(E R 397.25N, Bl
G, T EFERER, N A ON. FEASZEG | JBEE ) ) iU 3t /N T 5L
b/ \IR ST, X SIERS R B . FRFAR2-6R] AE S50 2 59 7 A RSk
B 5 oRUL, YRR, RRADR SN 2 3RFI T kg = 1.606 K, LA filEE S B
WIS UEEAR P E R 1 T 0.238 K. sl T AR, Mm-S IRIE A (0))
5 Cn s S5k SRS 2 1 fd B 2 B AR R £ (6) B 3R2-3 ), ARFEIE s 8 T
ho R, KT ARAERBOR, hy BUN, T ANAESBUN. IRIEARERES K]
T AR R, DR e At o BE R P B S IR S . R ) ) & L s e B IR
FEANAERET E AR M )R TERRERT B (3—4), RS & BE MR R L ny 0 ih A 3
B ITRER, E SRR T, R B0 ON, B BVEHI 2] AR B, I
KA R 556.21IN, %5+ 0.86 bow.. XM /N, ARTESE RO AT AT, AR
SCYG T 2, B A RN LT A B S T e A, BRI, A IR e 4
AT T2 S T el , S 80T A 2 P R e S 20 g A SR U A A b T 5 1)
HABE /N

SEH 3 SR M REAS . E BRI A B SRR T A7 R 0 B TR ) ) 5 R e 2-
207, TEFMUBEI B (1-2), SAPs B AR DA A Al BE S ey 25,0 )/ T 1)
BEMIZ SN, TR B, BT 004 R e S BT e o AR R Ty, 2 3
JIEWIGR . TEREERT B (2—-3), HIESE AR BER A ), AFIE(E R 734.26N,
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Fig.2-19 Experiment 2 Experimental data of normal force on the wall
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Fig.2-20 Experiment 3 Experimental data of normal force on the wall
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Fig.2-21 Experiment 4 Experimental data of normal force on the wall

B, FOREHEM TR 973.5IN, 45T 1.50 baw..,
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W B R . TERSEERT B (2—3), BmSE A BRI BET K ), iAFIE(H R 678.82N,
B SRR/, B EITREE, /N ON. FEBSBER B (3—4) , FE B & BE AL
SRR Z S BT R, FERs A iRy, I E G ON, B R VR
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Fig.2-22 Experiment 5 Experimental data of normal force on the wall
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Fig.2-23 Experiment 6 Experimental data of normal force on the wall
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WERRI MG B S BT B, TEMS AR, IR HR ON, B R EHRTZ]. 78
TEHOBY B, BRI )k 1361.12N, 45T 2.09 b.w..,

SEHG T SR A R A S WA o ph S A TSR SR ) A SR ) BE I )
SERE2-24 W], TEREMUEETR B (152), BOMSE SR AKT DAAS A M B S s 0
Ve In BE S Sl , AERMbb B, BT (00 TR B A S BE T e b P A R ), 2
B 7B WG R . TERSRENY B (2—3), MRS A R I BETE & 7, 1K BIE(E N 660.73N,
WG BN, BB, BN AT ON. fEBSBERT L (3—4) , 75 M2 B R
FRMERIWIEG A 3 G BT RE, FEMS AR, I E R ON, B R R %)
TETEHY B, B RRYEEfl 7 1037.74N, 55T 1.60 b.w..

SEH 8 SR MU HAEAS o oh B A B R S ) A SRk ) BE TV 1) ) R [ 2-
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BEVHZZ, TEREMhprEe, WM 00 M A 5 R e sy - AR, S B R
JIBHHER . (BT (23), HUNSE A BRI BRI A ), KB IEfE Dl 678.82N, Fii
JEBEIE N, BESITRE, WA ON. FEBSBER B (3—4), {EHImE# R A2 2
WHIRIIG A Sh &G BT RET , TR A AR b, MR ON, B 2= VE N %] 78

46



FoF REEEEESERIE R R L AT

I B, EeRIRBEf Sl 1148.74N, ZF 1.77 baw..

SEH O RN HAEAS o oh SR A B R SO ) A SR ) BETET VA 1) ) R [ 2-
26WH1, TEFMUBETIR B (1—-2), SR B AR DA A Al BE S ey 5.0 7/ T 1)
BEVHZZ), ERefhlrie, HomE i R A 5 BT e i - AR R, 2 B
JIBEIER . FEBSBENT B (2—3), BRI BRmBEI A T, SABIEE(E N 715.58N, [
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Fig.2-24 Experiment 7 Experimental data of normal force on the wall
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Fig.2-25 Experiment 8 Experimental data of normal force on the wall

e f Rl K, SRR, A . T M ST R
v U 220 AR HE Ol 22K

SR LRk, A RE 25 TIAE B0 2 2 07 1 2 S R B S5 hR 27 51 R -
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Fig.2-26 Experiment 9 Experimental data of normal force on the wall
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Table.2-8 Wall-flip parameters: contact force

SE S BEEEINTZI N(b.w)  JRHBINNZ] N(b.w.)
Exp I-Suc  419.29(0.65) 994.72(1.56)
Exp 2-Fail  397.25(0.62) 556.21(0.87)
Exp3-Suc  734.26(1.15) 1148.74(1.80)
Exp4-Suc  539.45(0.85) 973.51(1.53)
Exp 5-Fail  678.82(1.07) 1460.74(2.29)
Exp 6-Suc  830.52(1.30) 1361.12(2.14)
Exp 7-Fail  660.73(1.04) 1037.74(1.63)
Exp 8-Suc  678.82(1.07) 1148.74(1.80)
Exp9-Suc  715.58(1.12) 1059.54(1.66)

% 2-9 By -5 TR ) S E (W iE e ZE)

Table.2-9 Contact normal force mean value (standard deviation)

ST ) (bw)  RIK (bow)
PEBERTZ] 1.02(0.24)  0.91(0.25)
PR Z)  1.75(0.22)  1.60(0.71)

(2) AT AR AR T B 7480, e BT 2 A2 N 2
SIUFAT, AEBIT BT R SRS F B TP, o A,
HUHE A, A TR 455 e s B . A RS B T o Ao
B AR 7 R 2 B S AT RT3 7, LA g
WA AN SR B, TR R A B S N FE 0 3 )27
EUHE
2.4 REING

R B LA KB o 2 38 5 R W29 B 41 28 55 T o 0
RGCRIE T HIRL TR A B E RO . A A PR AA 0L T 2 B
HEFFAMT, M T S RIRBIRAGIZ S A1, I IAAY T i B 2 R52 B2t P
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Fig.3-1 Wall-flip simplified model

T, = %M (%% + 3,7 (3.2)

Hr,
x5 = (Ly="x)sin(6) + %Lz sin(6 — ) (3.3)
72 = (Ly="x) o5(6) + 5 Ly cos(0 — ) (3.4)

HRER HE IR, FTRAA
(Lo—"x) cos(0)

V =mg(p+ 5 )+ Mg(p + (Ly—"x) cos(9) +

Rk H B8

L, cos(6 — ¢) 1
lf) + Ekaz (3.5)

L =T(d) = V(4 4) (3.6)
S, T RGHEE: Vi REMHGE g R, i H R
g
et (3.7
£y BT SRR T2 005 11y

LRI DA 20 2y B
F = M(g)q + C(.)

Hrr,
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My, M, Mi;
M(q)=| My My My; (3.8)
M3 Mz, Mz
C(q,9)
Clg.9) =] C(q,9) (3.9
Hrp, Myy=M+m, My =My = %’Sm@): M3 = My = %Sm@)a My =
LM si L*M
1 2sm(¢)’ My, = 14 ’
b2 2 b
m°x“ + mL Ly’x(4M +m
My, = 4 M(LE+bx%) - =2 ( )
4 2
LoL,M cos(¢p)  L,yMP"xcos(¢) L%M
+ —~ +
2 2 4
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4
)2 b 9 o Ly9? .
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4 2 4
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— Mgcos(0) + 1M 2¢ ) cos(¢ — L M0Od¢ cos(¢)
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.- L, M&x sin h— 20 - b
2M0Px(Ly="x) — = 2(¢) @=20_ LiM6bx cos(¢p) + (LoL M sin(gb)d)(% - 0)

c. - LiM(=2s sin(¢p — ) + 40bx cos(¢p) + 2Lo0 sin(¢p) — 26%°x sin(¢h))
3 —_—
4

h T FRORBERNE N D), ARG T HE— R, RS E R AR,
EI3-1. DAIEAT pe IRFENIRA B, B pe (IR EN Hy, BRI E465E "x = Hy— H,, &
RGEEHSC A o, NARE M., TEMlanAm R J) F, alPARIA R :

F, = (—M_Hyi)cosa + M,&*H,sina (3.10)

VI S g O IR I EE R . R T RS 2 RN ErEhE, XA
JVAZAE— € Y R AT RERY /)N

FEfUEES R, B2 B BE Rl R E D RER S E AR RIS
D SRR, BESE 2RSS ME RN . B E AN 2
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R R R A AT 55 25 (A R I Bz s vy 0
3.2.3 B\ ER B

H BT, ARG B TR
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FEMMEE Y B A BK B0 R G, DI v, 4 0.0 5 Px BB 8 12 R 3.1 ik
e, SR AT S HE A5 sk FE IR R Ok, S B Wi R A2 H, H
RATIHER TR B. 2 u=[F, 7, 5],F =R E KN, 7 22 aks) /)
T, 7 M SRR BN A

f=H# +B (3.12)

MR ZRGERAEIS R T RR/DS 1R I B i A 77 AR 0 A0 R 2 7 A R A0 B2 0
— B FER I B £, IR AL E A AR R ZE R 0. (HZSEPrr, SRAER ]
ARRTCRRIN, Pl A i 30 2 A 0 3 32 P s L 5 300 B Al ook 5 il 2 1) — 2R 97
REER, FTPAREE (7 IR 3, 2 R R =M A iR 2 . Fr AN A
IR T REEI, W ATE ™ AR R ZE A A R BRI TR M, IR SE S
P

AT BT 45 23 R LE ¥ = 3, R DAL

=3 +b (3 -9) + k07 -y (3.13)
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FERTIES) 124(3.14), FEHIMER QA 3257 .
y=H"'(f - B) (3.14)
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y=Jj(Q) (3.15)
Hiy € R, R R[S0, HHARE 0.6 M Px. B J) = ;le, J, = ;—qu,
J=1Jy, D]
PO g IR E S

y=1Jq (3.16)
y=Jd4q+J1d; + Jrd, (3.17)

SRR AR R R EHAH LU I R e
N4y + Nipdgr =7, (3.18)
Ny1Gy+ Noypgp =7+ u (3.19)

He, g REPSIXTT0), 0 REFHRTENXTT (b 1 °x), SIBHT v, N
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M. M.
N = 2 My l I H -
22 l M;, Ms;

_| Nu Np
N(g) = Ny N (3.20)

MR N 2R, L, Ny 5 Ny MIEERFE, HHAW.
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| d 1
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el 3-2 B0 R A A ]

Fig.3-2 Control Block Diagram
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Fig.3-3 Exp.3 Trajectory tracking simulation results
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Fig.3-6 Simulation results of Experiment 3 of lumbar joint force
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Fig.3-7 Simulation results of Experiment 8 of lumbar joint force
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Fig.3-8 Simulation results of Experiment 9 of lumbar joint force
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Fig.3-9 Exp. 3 wall normal force simulation results
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Fig.3-10 Exp. 8 wall normal force simulation results
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Fig.3-11 Exp. 9 wall normal force simulation results

63



SRR FARE LT

915.99 N, PrifEfmZE N 29.55. BELRUERSR IR A BE T vA [ S5 Sy, JRUnT AESR o BE T L) 7]
J1. Wik, SARSREmRSEA o BT OREFEIR A S ST BEAT, o BT ORIEIIbLE: A
SRR E . SRS I o S E MR R ROk B, R
THIE ) Sy, AT RESE m BE TR D) ) g o (ELR Q0 2R B 0 5 BT 1) e A ok /Ny it B
FETEE ALK, EREERGREER, A5 SEERIREIAY, A5
{2 . T AT S BRI A B = BE MR P A 0 2] Py B i e A T
3.4 REINGE

7 F T Ao U5 Sk B s i Bl g A A TR G fl B sl s IR A T I R A
Xt i AR R A T ik B s B 1 h =5 EL . ARFE S 205 i i 12 RO
NIEDT [ G S, RO AL N RSB RE Al I T A, 2 T AE R
AR5 0 rp PR VTSR T iy B A 1) ) R RUETE R, b AT S I s 2l 2 0
R PHOAH R P 4 1 SRS ) P TR -

64



FITFE A FF AR 6915 ALE AE ) KT
FNE HNWEHEREFHHANEASEE

4.1 A

AERFEE PG |95 Pybullet 31 J724 0 BT & #E1 705 AAILAR SR 2 B 50 5, Ji
Bl 12440 BT AR AL N AT 2 fd B 2 BB R 5 4 ) B R A T B e . AR A
5 BRI BT A TR AR, 55— B R IRk BRI T SRR R RS LA N 5T
7S FH AR R e ) A L, 5 568 =it B SRR FRAEON e BRIk . 55 —ANH
PR 2% S B A v 2 4 it B X L N S s s 0 0 08 R 2 1) 8 285 ¥ b 1) A AR 52 )
AT I kB 23 T SIS AL A AN AR SR F 2 B i sl g B RO APLES A Atlas
B, i HARB B T Bl 2R O ESE R, HAEYHEE |35 Pybullet {f HERE Hiz178h 1
42 HBARTRTA

MLgs Nl BE 23 B 75 B e B 1 & IR N8 3l ) seNs e BE T _L = A R 510 3l & 15 4 B e
ESEAS IR Beplgs N . HETRTORHE R WA Atlas B9 B DR B Belg r= A e Kt I E
TR, I HH AR SE IS TIRE JT . ASHIFIT I 4 5T BT FR B = AR K Y
T RSV Ak R B T e R rh e AR AR I B O A eSS . ARYR SR =S R
IEH I R B R 2260.71 Nm, 456 Atlas [R5 18, Algs A IE STy
L A E T8 2000~3000Nm B 1 W) 1A . R, ASBIF9 i e s i S >Rk
W LBl 105 APLER N Atlas [RBSSEAT 3 i HSE 0 . Bl 12 Bk )2 Atlas
Plar NEZL AN E4-1(a) B . Fra 05 ESFEAH R TARS IR N k1T, e #Es |
2 Pybullet Fit47, MAS K 2.6.6. FEYIHEE|EE Pybullet H1) Atlas B84 5 [ S B PR R
—3%, Blizdizesfl, B fmrE sk E S SR 2.

SR ) Atlas ALY urdf SCHAE B Pybullet B 5 BL8Y FESR AL, AR YRS
B R ARYE Toro ‘B ML . {5 AHLES A Atlas S8 78 182.41kg, B &N 2.0m
PAS I £ B 0.95m. FEXTHBE T, Atlas Mg ANAEAUFEL . SRT-HIDY %5
By, a8 FRHRAE 30 AN AT H HE . Atlas Bl ABCRLIE 565 DA _F 4% 56 3 R
FT AR XS I 2R FH B9 AT B % 3 S HL 8431145 B 40 B an 22 4-114-2.

AT AR ZE Atlas BB SR SC I TP AR T I 22 R, RBAR4-3A T
PLas N Atlas B2 5 MIFEE O T E X L R . &R i A 4 e R . AT Rl

65




SRR FARE LT

% 4-1 Atlas JEY DA_EAS 0 R A 58T WA B B

Table.4-1 The parent-child rigid bone corresponding to each joint (upper body)

THNAEEB (B kg)

KATHMEMS  KHNIEEE (HBTHE: ke) =
back,, AR Itorso (2.270) H1 4K+ mtorso (0.799)
back,,, F pelvis (9.509) FYRF Itorso (2.270)
back,,, H14KF mtorso (0.799) SR utorso (84.409)
neck,, KT utorso (84.409) 3 head (1.420)
Larm,, 4R utorso (84.409) Bl Lelav (4.466)
Larm,,, 84 Lelav (4.466) JE B Lscap (3.899)
Larm,), JE I Lscap (3.899) 72 1 Luarm (4.386)
Larm,,, 72 1 Luarm (4.386) 72 F R Llarm (3.248)
Larm,,, 72 R Llarm (3.248) 72/ | Lufarm(4.386)
Larm,,_ 72/ b Lufarm (4.386) 72/IN R Llfarm(2.509)

Larm,,, 72/N N Llfarm (2.509) 72F Lhand(1.000)
Rarm,,, T utorso (84.409) Bl Relav (4.466)
Rarm,, 45 Relav (4.466) JE B Rscap (3.899)
Rarm,, JE I Rscap (3.899) 45 1/f¥ Ruarm (4.386)
Rarm,;, 45 I Ruarm (4.386) 45 R Rlarm (3.248)
Rarm,,, 45 R Rlarm (3.248) A5/ ¥ Rufarm (4.386)
Rarm,,, 45/ |7 Rufarm (4.386) 15 /N F R Rifarm(2.509)
Rarm,, , 4/ R Rlfarm (2.509) 4T Rhand(1.000)

MAZZFAE AT AR HbLge AR _EAKT . TR IR T RYSR T2 BRI 53.17%, B
TR0 0T I T 43 FEJRRISR 42.6+7.55% . R, MRS E AR SRR PE S8 50 v iz 3l 7 91 A
—ERE PR UG B NI Atlas B2 B

NT AT Atlas B S BRI PESC IR PR AT 2257, 4-145 1 T AL
e NG S0 r B R R G R XS R R . MBIl R G Nl T fiE
iy th B BV PR A BUR BEAE T H BT I, SRR B 1S AR i %
HIPAXTRY. 45 AN H HEE . 1T Atlas B A, FER H i ETTTH, Atlas Pl A4
Fk AR AP EE AR Ay, A By BTN IS 30 AN H . PRI Y B
ﬁﬁ@%ﬁ%ﬂﬂﬁi%E’JM%&A*K%ﬁﬁﬁ@?&%ﬁﬁ%ﬂ%%?&%, T2 2 TR I
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% 4-2 Atlas JJE 5 DATR 2% X MR A A0 TR MIA1 B

Table.4-2 The parent-child rigid bone corresponding to each joint (lower body)

KUTHMEGY  RPNEEE (BT ke) TR EE (B BmEke)
Lleg,,, B4 pelvis (9.509) 8 Luglut (1.959)
Lleg,,, J24 Luglut (1.959) J28 Liglut (0.898)
Lleg,,,, & Llglut (0.898) ZEKHE Luleg (8.204)
Lleg,,, AR Luleg (8.204) £/ Llleg (4.515)
Lleg,,, /MR Llleg (4.515) ZE I Ltalus (0.125)
Lleg,,, ZE I Ltalus (0.125) 72 /2 Lfoot (2.41)
Rlegy,. ‘B4 pelvis (9.509) &5 Ruglut (1.959)
Rleg,,, JE1 Ruglut (1.959) & Rulglut (0.898)
Rleg,,, JE Rulglut (0.898) F K Ruleg (8.204)
Rleg,,, F K JhB Ruleg (8.204) F/NiB Rlleg (4.515)
Rleg,,, F/NiB Rlleg (4.515) F IR Rtalus (0.125)
Rleg,,, F IR Rtalus (0.125) 2 Rfoot (2.41)

RATUHN B TERE FT

(a) Atlas f5i7

(b) BhIA
& 4-1 Atlas B2 5 Sl 25 b

Fig.4-1 Comparison between Atlas and motion capture system model
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% 4-3 Atlas PLa§ AARELE BB R X L

Table.4-3 Mass comparison between Atlas and human

BREA Al AR (kg)  ALaw MM (%) MEE R (ke)  HEESEHIDBUR (%)

Sk 35 1.42 0.78 6.045+0.936 9.30+1.44
AR 84.41 46.27 11.05+£2.392 17.00£3.68
HHRT 0.80 0.44 8.94+£1.12 13.75+€1.72
THET 11.78 6.46 7.70+1.40 11.85+2.15

T 31.99 17.54 1.69+0.35 2.60+0.54

Bl 13.79 7.56 0.85+0.18 1.30+0.28

F 2.00 1.10 0.42+0.08 0.64+0.13
pNi 22.12 12.13 9.10+1.66 14.00£2.56

NI 9.03 4.95 2.60+0.55 4.00+0.85

2 5.07 2.78 0.98+0.18 1.50+0.27

EEQEN 182.41 100 65+0.04 100.00£0.06

4.3 LI

AREERIHTTE H Y2 B R EEE 1 45 R0 R 5 B 1B TR v 2 AR A B AL e e 1
R BE 2 1) ZE ST BRI AR VRIS W o DIPTSR S B O B SE e R 5Ky o SR 75 27
AR ) g SRS UL 45 ft FSR A B T2 A A AR A AR o D e oA R kse R
MR HIL e A 52 s AT TR R B 1) A58 M 1 T AN 32 M 5 2L ae N R By
REEBRE Y . BT ABR A IE 6 AT A . L, AWFTTRY i 7 LR
TR, 7 EARZ A B LS AR B ERHIE 7 A4S H i BERAAIE

PLEs NTEWBG EE PRy 30 577 A iR KTz 3 6] Pybullet AL {78 7 1l
B, AT IR Y A P A iR KA 5 S b ), A Pl 1 e K AEA SO0ON. ¢
SEATHLAS BRI BRI 7 A5 B il BERFALAR I 26 T Sh AR STt iy o1 25 1]
RIS AL B a3l dlds NBRHR SESHAL 7 437 Bt Bz sl A B
FREMRA-4 . HAR A CHERY 23 4~k B i Bl R AN 0, TAERAC O B il
FEIZ LA RS B AR A BT

H
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Table.4-4 The partial freedom of degrees of Atlas robot

AR 5 B iR (Rad)

HEXRTT  backy,,
ZERERAT Llegy,
ZefERAT Llegy,,
ZEBRKAT Llegy,
AWKT Rlegy,
AERT Rlegy,
AR Rlegy,

[-0.219,0.539]
[-1.612,0.658]
[0.000,2.356]
[-1.000,0.700]
[-1.612,0.658]
[0.000,2.356]

T T S S

[-1.000,0.700]

4.4 LG LEHE
4.4.1 FENFREXTLL KL

APFFE BN E MR R T SR S, 28 B b 2 Rz 3 7 5 2553 1 s
LERB AR TR BN ) F I AT Of AW Nz s S i - 5 G Bl A, A
WS —FX S AR B R AR HEA T ATRRANEE . 4R 7chR . T, BERR% ).
TSR | B O B MSHILA A B v R A VR LR (ho) FERIRSPLAS A S
) 75% B HIELAS AN B R 80% ZIA); il BER RS 1.54m, Hlas NIRIARF 0 o 81°,

F RS0 14 O B8 5 ¥ I B G, SR /5 B AR RO I AR AU B2 i A
BT A A P AR AR AR U DR SR8 . RIS AR R A R XA 8 A58 18 B A
RRE A 1) SRS R LA A T RS i 75 B A L N 2 B B SRR 5y L R AT R ER
KA 6 DRATEH W L, AHFFER) 5 8 55 e SRR AN, (7 B
JEBIDLAS BRI S BRIE 7 A4y B b FEAFAE . EBCH A AT . ZeERy . A
KAT L ZEEET L AR AR L R E B SV IR S A . 153
S Ia B AN A EA-2 7

e TRz S e SIS SCRERTPE 25 PF R B BRI A E R A A it o
il BE BE B SO M. Pl S TR R, RS D D R T Y A T R 2R 8] 2
0.216s, Sy 1 UL SE I BE {5 ) S5 58CH MR WV BIL e N 56 1l s AR R A 2 1) S5 v L) A T
AWFIE B ARG S S IR B % S RO A R )2 0.216s, Xt BT iy fiy A
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Fig.4-2 Motion planning joint movement curve
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Fig.4-3 Experimental pitch angle of the Atlas robot in the wall-flip Exp.1 trails
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Fig.4-4 Wall-flip experiment 1-1
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Fig.4-5 Wall-flip experiment 1-2
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Fig.4-6 Wall-flip experiment 1-3
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Fig.4-7 Experimental torque of the Atlas robot in the wall-flip Exp.1 trails
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Fig.4-8 Experimental pitch angle of the Atlas robot in the wall-flip Exp.2 trails

W SE g iy BL Al EOR A h AR YR, A T S M A i AR Rl BB X Az sl BT
BH IR T 2208 B RISRRSITE . WU SEI AR Fe R A AR R A IR B Sh A e 51, 5K
B 2-1 R “EAE MRS A, S 2-2 SR A AR B AR B 1 B A Y
fifl b2 A AR BB IR R 1

K14-8 /R T AMEEZS TSR 1 A lde N B B A Lk R, Bl AN BT BRI
Ehf BB WA Ay 1.13rad, FEE ISR RO 2T )2 0.216s MYRIFEIF T, 7E
S 2-1 v, ML N _ER B A EE B WG N EL R 6.28rad SIS WA AR 1L
BRAFE RSN AR 7 51 BEAS (AL A% Al L DASE: B 1 i A 5 ) S S e v ZE T B A SK
B 2-2 p, LA N b B R BRI 2 S.61rad, LB A A i (6 48] M 5 2l
BEZSHASRIG, ASBENS AT F 0 I ) 1) B Pa  AE T b TR, ARRE Al BRAG#5 ¢ y
TRz S RENS b Lge Al BE 2 B EoR BOA I T AR IR AR 1 HR R B VR A 2 S 2L
i AL {0 2 S B s R SR

L8 2-1 A1 2-2 DA—E IR0 Ria s RASHE B BE ), FEAN RISV ERLII Y <1 iz 3l Tk
ARSI R, BITREZ e R SRR AR MR o PRSI A4 07 LA AT
F4-9M4-10078 . PASEES 2-1 1, KI4-OW R 118 BT 3 B RE T 5 AEAS 10 2h 58 1+ B
FSEH: 2-1 BIZSh AR R (1) S A IR B Jo o S g O BT b 22, -5 35 i A A7 P
GRS RA VRS R HERIEA ST B 72 (152) w, ARl iE, XIS

75



SRR FARE LT

} Q‘L

& 5 ;
= =,

] 4-O fh B s SR XE LU O B PR S B8 2-1

Fig.4-9 Wall-flip experiment 2-1
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Fig.4-10 Wall-flip experiment 2-2
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